Date: Thu, 15 Apr 1999 14:55:20 +1000

From: Geoff Keating <geoffk@ozemail.com.au>
To: AESFirstRound@nist.gov

Subject: Revised version of my AES2 paper.

Please find below the revised version of the paper | presented at
AES2. It includes some corrections and some new data. Itisin LaTeX2e
format. It is available on the Web in PDF form at

<http://www.ozemail.com.au/~geoffk/aes-6805/paper.pdf>

Geoffrey Keating geoffk@ozemail.com.au




Performance Analysis of AES candidates on
the 6805 CPU core

Geoffrey Keating
15 April 1999

Abstract

The AES candidate block ciphers Crypton, Mars, RC6, Rijndael, and
Serpent were implemented on the Motorola 6805 series 8-bit architecture.
Their performance, including ROM and RAM sizes and time to encrypt
a single block, was measured in simulation, and the results presented and
compared with results for the other NIST cryptography algorithms SHA and
DEA and previously published results for AES candidate Twofish. Rijndael
was found to be the clear “winner”, but the ciphers Crypton, Serpent, and
Twofish also performed acceptably.

The NIST is currently evaluating block cipher algorithms as part of its Ad-
vanced Encryption Standard development effort. Among the requirements for the
AES is that it should be efficient on small 8-bit processors as found in smart cards.
Unfortunately, although most of the AES submissions presented performance esti-
mates (sometimes even timings of actual implementations) for some kind of 8-bit
processor, there were almost as many 8-bit processors used as there were submis-
sions. In this paper, we hope to rectify this by implementing the most likely AES
candidates for a single 8-bit platform, the Motorola 6805 series [3] and measuring
their performance in simulation.

The candidates chosen were Crypton, Mars, RC6, Rijndael, and Serpent. The
authors of the Twofish AES submission [8] have already implemented Twofish on
a 6805 CPU, so we simply quote their results below. These include the fastest five
algorithms on the reference platform. There is some discussion below of the next
two fastest candidates, CAST and E2.

1 The 6805 processors

The processor family we chose is based around the Motorola HCO5 core. There
are a large number of variants, all of which use the same instruction set and tim-



Table 1: 68HCO05-series processors.

Part RAM EEPROM ROM typical price
(bytes) (bytes) (bytes) package (USD)

MC68HC705KJ1 64 0 1240 16-pin PDIP 0.84
MC68HC705P6A 176 0 4672 28-pin PDIP 1.89
MC68HC705JJ7 224 0 6160 20-pin PDIP 2.19
MC68HC705C8A 304 0 7774 A40-pin PDIP 3.95
MC68HC705C9A 352 0 15932 40-pin PDIP 4.95
MC68HC05SC41 128 3008 6144 sawn wafer

MC68HC05SC42 384 8192 32040 sawn wafer

ings but which vary in ROM, RAM, ancillary logic, and packaging.

Table 1 lists some members of the family (on the cheaper side), with their
RAM and ROM capacities. The 68HC705 parts have EPROM instead of ROM
and are thus suitable for prototyping work. They can often also be programmed
by the user’s code, which would be useful for (for instance) loading a key schedule
in the field, so that the key can be stored in EPROM.

The smartcard variants (the 68HC05SC models) in the family are not available
with EPROM, and data books are not available to the casual enquirer. They do
use the same CPU core as the general-purpose microcontrollers so the resource
requirements for an encryption algorithm should be the same.

The prices are Motorola’s North American prices for shipments of small quan-
tities (around 50) to distributors.

The processors can run at cycle rates of up to 5Mhz, depending on the partic-
ular model and operating voltage. 2Mhz is a typical maximum.

The 6805 CPU core has four registers: 8-bit accumulator, index register, and
stack pointer, and a 16-bit program counter (of which the high bits may be unim-
plemented). There are four broad classes of instructions:

e Register/Memory instructions, that operate between the accumulator and
another value stored in memory, for instance, ADD;

¢ Read-modify-write instructions, that operate on a memory location, the ac-

cumulator, or the index register, for instance, INCX, which increments the
index register;

e Branch instructions.

e Bit manipulation instructions, which can set, clear, or test a single bit in
memory.



Table 2: Memory requirements of the algorithms.

Cipher RAM (bytes) ROM (bytes)
Scheduled Encrypt Schedulé&Encrypt Encrypt+
key Schedule
Crypton 32 53 52 1101 1349
MARS 23 91 74 4059 4077
MARS (2) 160 33 32 3329 4136
RC6 56 55 38| 1342 1374
RC6 (2) 176 24 30 639 933
Rijndael 16 34 0 879 879
Rijndael-d 16 37 1 976 1049
Serpent 16 85 0 1056 1056
Twofish 24 36 ? ? 2200
DES 96 21 19 680 1036
SHA 20 98 0 379 419

There are also some instructions that do not fit in these categories.
Some of the features of the core are:

e Single-bit rotates and shifts only;

e An 8 x 8 — 16-bit multiply instruction, which takes its inputs in the accu-
mulator and index register and returns the result in the same places;

e Faster addressing modes that operate on the first 256 bytes of memory;

e The number of cycles required for any instruction is independent of the
value of the data operated on.

The author constructed a simulation environment for this processor for the
purposes of this evaluation. The simulator keeps track of the number of cycles
executed, so it is possible to obtain exact cycle counts for the algorithms. The
simulator, and the algorithms implemented, are available from the author’'s web
site [5].

2 Results

The five ciphers chosen, the DES and the SHA were implemented, tested, and
their performance measured. The results are shown in table 2 for the memory
requirements and table 3 for the execution time.

3



Table 3: Execution time of the algorithms.

Cipher Time (cycles)

Encrypt Schedule
Crypton 31524 5075
MARS 358240 212735
MARS (2)| 34163 110066

RC6 105981 78808
RC6 (2) 32731 82167
Rijndael 9464 0

Rijndael-d| 13538 2278
Serpent 126074 0
Twofish 26500 1750
DES 17458 12320
SHA 67244 478

In the table, ‘Encrypt’ is the resources required to encrypt a single 128-bit
block (64 bits for DES), or to step the hash function once (hashing 512 bits).
‘Schedule’ is the resources required to schedule a 128-bit key (56 bits for DES),
or to set up the initial hash.

Note that the ‘Encrypt’ resource requirements for Twofish include the capa-
bility of performing decryption; for the other ciphers, this is not the case. Also,
all RAM requirements assume that the input data is stored in RAM; for some key
schedules this is not necessary.

In general, the algorithms were implemented to fit within 120 bytes of RAM
including the key schedule. The algorithms were implemented to take about 1024
bytes of ROM, but flexibility was allowed where this would cause a large speed
penalty.

The algorithms were implemented from the specification in the AES submis-
sions. The author did not spend large amounts of time studying each algorithm,
and it is quite possible that a significant optimisation may have been missed if it
was not discussed in the AES submission. Certainly, there are minor improve-
ments that can be made to the implementations.

2.1 Crypton

Crypton is unexpectedly slow. It turns out that théransformation takes 1140
clock cycles to execute because of the single accumulator, accounting for 43% of
the execution time. The implementation above execut®gelve times.



2.2 RCG6

Two variants of RC6 were implemented. The first satisfies the 120-byte RAM
requirement, the second would be used if more RAM was available.

RC6 includes a variable-size rotate, which takes 260 clock cycles when im-
plemented to be constant-time; it accounts for about 40% of the encryption time
of the first version, and 30% of the second version. About half, on average, of
the time taken for the variable-size rotate could be eliminated if a constant-time
implementation was unnecessary.

Note that RC6 will be much slower to decrypt using 120 bytes of RAM, be-
cause the RC6 key schedule produces the results in a less convenient order. It is
likely to take about 700000 clock cycles to decrypt one block.

2.3 MARS

As for RC6, two variants of MARS were implemented. The first satisfies the 120-
byte RAM requirement, the second would be used if more RAM was available.
The first is very slow because of the need to repeat the expensive key schedule
five times.

MARS suffers somewhat from the requirement for a constant-time implemen-
tation. More than 25% of the time of the first implementation is spent computing
values which will almost never (less than 1% of the time) be needed, to ‘fix’ key
words.

The large S-boxes in MARS preclude implementation in less than 2K of ROM
and 120 bytes of RAM. MARS is also sufficiently complex that it would not fit in
1K of ROM even given unlimited RAM (computing S-box entries using SHA).

2.4 Rijndael

Rijndael was the smallest and fastest cipher of those implemented, being more
than three times as fast (per byte) as DES. Rijndael also deserves special mention
for being implemented in 64 bytes of RAM.

The decryption process in Rijndael is listed as Rijndael-d. It is more expen-
sive, by about 30%, but not enough so that it is slower than the other algorithms.
ThelnvMixColumn transformation is coded as

tmp = a[0] ~ a[l] = a[2] " a[3];

xe = xtime(a[0] = a[2]); xo = xtime(a[l] ~ a[3]);
tmp2 = xtime(xtime(xo ~ xe)) ~ tmp;

a[0] = xtime(a[0] ~ a[l] = xe) = tmp2 ~ a[0];
a[l] = xtime(a[l] = a[2] ~ xo0) = tmp2 ~ a[1];



al2]
a[3]

xtime(a[2] = a[3] = xe) ~ tmp2 "~ a[2];
al0] ~ a[l] = a[2] ~ tmp;

compared tiMixColumn coded as

tmp = a[0] ~ a[l] "~ a[2] ~ a[3];
a[0] = xtime(a[0] ~ a[l]) = tmp ~ a[0];
a[l] = xtime(a[l] ~ a[2]) =~ tmp ~ a[l];
al2] = xtime(a[2] ~ a[3]) ~ tmp ~ a[2];
a[3] = a[0] ~ a[1] ~ a[2] ~ tmp;

and this makes the entire difference in timing and RAM use.

The decryption code shares 266 bytes of tables (the 256-byte forward s-box
and a table containing the round constants) with the encryption code; otherwise,
the implementations are completely distinct.

Thextime primitive, could, if not implemented carefully, allow for a timing
attack. Making it constant-time cost about 432 clock cycles for encryption, and
1008 cycles for decryption.

2.5 Serpent

The Serpentimplementation uses a bitslice implementation, as this seemed to best
fit the available ROM. Despite this, it turned out to be quite slow.

About 40% of the time is used to perform the “affine transformation” in the
key schedule. About 30% of the time is spent computing S-boxes. The linear
round function takes about 17%.

Serpent takes a more conservative attitude to security than the other algo-
rithms. It seems likely that 16 rounds, instead of 32, would be sufficient for 128-bit
keys. If this is the case, the running time would be halved.

The S-box implementations used were based on Brian Gladman’s C imple-
mentation. It is probable that a 10-20% improvement in running time and code
size (of the S-boxes) could be obtained by using S-boxes optimised for this par-
ticular processor. The S-boxes account for 525 bytes of ROM and average about
560 cycles each.

In the Serpent submission, [1], timing of about 11000 cycles was estimated
for an implementation similar to the one presented. This is of the same order as
the time required for 32 fully expanded round S-boxes, without the linear trans-
formation or any key schedule, and does not seem to be achievable in practise.

Serpent does have quite reasonable RAM and ROM requirements. It is possi-
ble (and, for decryption, mandatory) to save 32 bytes of RAM by using separate
S-box routines for the key schedule and round function, at a cost of an extra 500
bytes of ROM.



2.6 Twofish

The Twofish AES submission [8] also gives a range of alternative Twofish imple-
mentations, varying between the one given in the table and one that uses 1760
bytes of ROM and takes about 37100 clock cycles per block (this implementation
was not constant-time).

2.7 DES

The DES implementation performs a partial key schedule to fit in 120 bytes of
RAM. The Twofish authors quote a DES implementation on the 6805 that takes
about 2k code, 23 bytes of RAM, and about 20000 clocks/block. This fits well
with our estimates.

The bit permutations in DES were implemented to be constant-time. If this
was not necessary an average of 2048 cycles could be saved in encryption.

2.8 CAST

CAST was not implemented. However, CAST seems unlikely to be suitable for
implementation on these processors because it requires 4096 bytes of S-box ROM,
which is unreasonably large.

29 E2

E2 was not fully implemented due to time constraints. The author estimates that
the f function in E2 would take about 200 cycles, based on a preliminary imple-
mentation. Because E2’s key schedule does not produce values in-order, it will
need to be run about once every three rounds; thusffl;@ction computations

in the key schedule alone will account for about 48000 clock cycles. So E2 will
not be one of the fastest candidates on this architecture, and it is reasonable to
suspect it will be of about the same speed as Serpent.

3 Future Work

Further work would concentrate on the AES second round candidates, particularly
any that have been overlooked in this paper, the implemention of other block/key
sizes than 128 bits, and the investigation of other tradeoffs between ROM, RAM,
and speed.



4 Conclusions

It is difficult to draw a direct conclusion from the above results, because of the
question (which is not addressed here) of the relative security of the algorithms.

It does seem than Rijndael performs remarkably well in a quite reasonable
amount of ROM (even allowing for the need for separate encryption and decryp-
tion algorithms), and, more importantly, in a very restricted amount of RAM.
Rijndael also performs quite well on the AES reference platform.

Other suitable Round 2 AES candidates would include Crypton, Serpent, and
Twofish. RC6 is probably not suitable because of its very slow decryption. MARS
and CAST are not suitable because of their high ROM requirements.

References

[1] Ross Anderson, Eli Biham, and Lars Knudse®erpent: A Proposal for the
Advanced Encryption Standarti998. AES submission.

[2] Carolynn Burwick, Don Coppersmith, Edward D’Avignon, Rosario Gennaro,
Shai Halevi, Charanijit Jutla, Stephen M. Matyas Jr., Luke O’Connor, Mo-
hammad Peyravi, David Stafford, and Nevenko ZumtARS—a candidate
cipher for AES IBM Corporation, June 1998. AES submission.

[3] CISC System Design Group, Motorola Inc., Austin, Texa&8HC705P6A
General Release Specificatialuly 1996. Rev. 1.0.

[4] Joan Daernen and Vincent RijmeAES Proposal: RijndaglDune 1998. AES
submission.

[5] http://lwww.ozemail.com.au/%7Egeoffk/aes-6805/

[6] Chae Hoon Lim.CRYPTON: A New 128-bit Block Cipher998. AES sub-
mission.

[7] Ronald L. Rivest, M.J.B. Robshaw, R. Sidney, and V. L. Yiihe RC6 Block
Cipher, 1998. AES submission.

[8] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall, and
Niels Ferguson.Twofish: A 128-Bit Block Ciphedune 1998. AES submis-
sion.



